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An Object Calculus for Asynchronous Communication�Kohei Honda and Mario TokoroyDepartment of Computer Science,Keio University,3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223,JapanAbstractThis paper presents a formal system based on the notion of objects and asynchronouscommunication. Built on Milner's work on �-calculus, the communication primitiveof the formal system is purely asynchronous, which makes it unique among vari-ous concurrency formalisms. Computationally this results in a consistent reductionof Milner's calculus, while retaining the same expressive power. Seen semantic-ally asynchronous communication induces a surprisingly di�erent framework wherebisimulation is strictly more general than its synchronous counterpart. This pa-per shows basic construction of the formal system along with several illustrativeexamples.1 IntroductionThe formal system introduced in this paper is intended to accomplish two purposes. First,it provides a simple and rigorous formalism which encapsulates essential features of con-current object-orientation [26, 25]. Being successful as a programming methodology fordynamic concurrent computing, its theoretical contents are far from well-understood,1leaving theorists and practitioners without a core theory on which they can reason anddevelop further ideas. Second, it o�ers a possible foundation for concurrency theorywhich is quite di�erent from the usual one in the sense that the formalism is purelybased on asynchronous communication, both computationally and semantically. Theusual observation-based equivalence theory for processes is recaptured as asynchronousbisimulation for objects where asynchronous experiments induces a somewhat more gen-eral semantic framework.�Appeared in Proc. The Fifth European Conference on Object-Oriented Programming, LNCS, July1991,Springer-Verlag. Revised in August 1991.yAlso with Sony Computer Science Laboratory Inc. 3-14-13 Higashi-Gotanda, Shinagawa-ku, Tokyo,141, Japan1Though recently several important works appeared in this context including [6, 12, 17].1
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The formalism is based on a series of studies on a port passing process calculus nowcalled �-calculus, initiated by Nielsen and Engberg [18], reformulated by Milner and hiscolleagues [15], and developed in a crucial way by Milner [17]. Especially [17] has beenessential in our construction due to its separation of structural rules from transition rules,and in its distinction between computational transition and semantic transition. Oneinteresting thing is that the capability to generate and pass communication ports turnsout to be essential not only for object-orientation (which is obvious) but also for controlof causality chains in the face of pure asynchrony. This reminds us of the studies onthe actor model of computation by Hewitt and his colleagues [8, 7, 5, 1]. Also readersmay refer to the authors' work on conceptual framework for open distributed computingenvironments [22, 23] to understand their general orientation in a di�erent context.This paper only provides basic concepts and de�nitions for the formal system alongwith several illustrative examples, leaving the full presentation of our theoretical resultsto the coming exposition. Section 2 de�nes the basic syntax and other constructs of theformal system. Section 3 introduces reduction relation which de�nes the basic compu-tational mechanism in combination with structural rules. Section 4 provides importantprimitive constructs for our system and shows that they can be used to encode a frag-ment of �-calculus [17] which is a superset of our formalism. Section 5 reviews the generalsemantic framework of asynchronous bisimulation, giving basic de�nitions and examples.Object-orientation in our semantic framework is also discussed. Finally Section 6 con-cludes the paper.2 Syntax and BindingsThis section �rst brie
y summarizes the basic idea of our formalism, then provides de�n-itions for syntax and bindings.Basic FrameworkIn the formalism presented hereafter, the notions of objects and communication are cap-tured in the following way.� An object is a collection of receptors and pending messages. A receptor has ahandle (an input port) and a carrier (a formal parameter) at its head, and consumesa message to receive the value at its carrier which carries the value to its body. Thenthis body generates zero or more receptors and zero or more messages. The originalreceptor just disappears. Notationally, it is expressed as ax:P (a is a handle, x is acarrier, and P is a body). All receptors within an object may operate concurrentlyand asynchronously.� A message is a simple data structure which carries a piece of information to itstarget. It should have its target and value, each being supposed to be a port name(i.e. no value is considered except names of ports themselves). The notation fora message is  av (a is a target, v is a value). Some of generated messages maygo out (becoming output messages), some may be consumed by receptors (causinginternal con�guration change), and some may be just pending within the object.2
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The computational implication of this framework is that a message will be consumed bya receptor if and only if its target is the same as the handle of the receptor, that is,  avwill be consumed by ax:P , but not by bx:P . Existence of multiple receptors in anobject implies an object may have multiple input ports, possibly with duplicate names.The port names are only values to be considered here, sent by messages and consumedby receptors. A con�guration will generate new port names which extends the domain ofcomputation.SyntaxSyntactically our formal system reduces, not extends, constructs in process calculi[13, 14,9, 16], to incorporate asynchronous communication. The key idea is to express asyn-chronous messages as output processes without subsequent behaviour. That is, �av:P (aprocess which outputs v through port a) is reduced to  av (a message to the targeta with a value v). In Section 4 we will see that this reduction does not result in lossof expressive power. Below are syntactic de�nitions of port names, messages, receptors(including recursively de�ned ones), and general con�gurations called term expressions.Term variables are necessary for recursively de�ned receptors. In the right-hand side ofeach de�nition, we give formal designation for these syntactic constructs.De�nition 1 The sets of port namesN, of sequences of port names fN, of term variablesV, and of term expressions C, are given by the following abstract syntax.N = x j N0 (port names)~N = " j NfN (sequences of names)V = X j V0 (term variables)C =  NN (a message)j NN:C (a receptor)j fV(fN)=NN:Cg(fN) (a recursively de�ned receptor)j V(fN) (a term variable with parameters))j jNjC (scope restriction)j C;C (concurrent composition)j � (the null term)There are several important conventions we will obey hereafter.Conventions 1 Conventions on notation and designation.(i) Non-capital alphabets (a; b; c; ::) range overN, the set of port names. We willoften call port names as simply names. We assume that di�erent alphabetsdenote di�erent port names unless speci�ed otherwise.(ii) ~a; ~b; ~c ... range over fN.(iii) X, Y , Z, ... range over V.(iv) P , Q, R, ... (sometimes A, B, C, ...) range over C, which are sometimescalled con�gurations. Speci�cally, M , M 0, ... ranges over the subsort of Cwhich are of the form  NN. 3
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(v) I; J ; K etc. denote incomplete expressions.(vi) We will assume that the constructor \;" is the weakest in association, othersbeing of the same precedence.(vii) In  av, we call a a target, v a value. In ax:P , we call the portion ax ahead, P a body. The body expression is guarded by the head part. In thehead, a is called a handle (or more descriptively input port), x a carrier. InfV (~x)= yz:Cg(~v) and X(~a), ~x; ~a and ~v are called parameter parts, and theirpreceding sections main parts. Then we say ~x is a parameter of V etc.Following these conventions, we will explain some of constructors and their intuitivemean-ing as follows.Examples 1 Meaning of constructors.(i)  av : A message with a target a and a value v. (Note that both are portnames.)(ii) ax:( ax) : A receptor with a handle a which, when it consumes a message,creates the same one and dies. Note that the �rst occurrence of x binds thesecond x.(iii) fX(x)= xy:( xy; X(x))g(a) : A receptor with a handle a which, when itconsumes a message, creates the same one and regenerates itself. Note thatthe �rst occurrence of x is instantiated to a at the end, and that the x bindsthe later occurrences of x.(iv) ax:P;  av; by:Q : Two receptors and one message. The left receptormay consume the message.(v) ax:(jvj  cv);  av : The �rst two occurrences of v and the thirdone denote di�erent port names, because the �rst one is declared as private(restricted) and the third one is not within the same scope. Restricted namesare meant to have di�erent values from those which are outside of the scope,even syntactically they are the same.Free and Bound Names, and SubstitutionThe following gives de�nitions for bound and free names, and substitutions.De�nition 2 Free and Bound names, substitution.(i) In ax:P , a is free, x is bound, and free occurrences of x in P are bound bythe carrier x. In  av, both a and v are free. In jvjP , v is bound, and freeoccurrences of v in P are bound by jvj. In fX(~x)= Cg(~a), names in ~a arefree, and names in ~x binds their occurrences in C.(ii) Similarly in fX(~x) = Cg(~a), we de�ne free occurrences of X in C and saythose occurrences are bound by X at the top. Hereafter we will only dealwith the cases where no term variables occur free at the top con�guration.We also assume that the length (as a sequence) of the parameter of a boundterm variable should correspond to the parameter of the term variable whichbinds it. 4
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(iii) N (P ) is a set of names in P . FN (P ) (resp. BN (P ) ) is a set of free(resp. bound) names in P . HN (P ) denotes a set of names used for handlesof receptors in the subexpressions of P .(iv) We assume that, in the expression fX(~x)= Cg(~a), FN (C) � f~xg, and alsoany pair of names in ~x are pairwise distinct.(v) P [v=x] denotes the result of (inductively) substituting the free occurrencesof x in P for v, following the standard convention for name collision (cf. [2]).(vi) We inductively de�ne �-convertibility among terms starting with ax:P is �-convertible to ay:(P [y=x]) if y is not free in P , similarly jxjP is �-convertibleto jyj(P [y=x]) with the same condition. We will assume [x=y] is strongerthan any other constructor (i.e. jxjP [v=x] def= jxj(P [v=x]) etc.).We will give some examples of substitutions.Examples 2 Examples of substitutions.(i) ( xv)[a=x]� av.(ii) (jvj  xv)[v=x] � jwj  vw. Here we �rst perform an �-conversion, thendo the substitution. Remember restricted port names denote values di�erentfrom those outside of the scope.Now we are ready to de�ne syntactic equivalence relation called structural equivalenceand reduction (computation) rule for our formal system.3 Structural Equivalence and ReductionStructural EquivalenceIn port passing calculi, transition rules become quite complicated because of intricate in-teraction between the port passing concept and scoping rules. It was found by Milner in[17], however, the introduction of congruence relation for syntactic terms, modulo whichtransition rules are de�ned, results in a surprisingly compact and tractable formulation.The idea is to incorporate within the structural rules tacit yet basic semantics of vari-ous constructors, freeing transition rules from expressing those static features laboriously2.Thus we can concentrate on truly signi�cant aspects of computational and semantic prop-erties of the target system.Below is our formulation of such structural rules, which is generally based on that of[17], yet somewhat weakened to make computational aspects explicit. Notable facts are(a) the equation cannot be applied to guarded expressions (i.e. the body of receptors),so that � is not a congruence relation, and (b) the relation induced by (ii), (iii), and(vi){(ix) is �nite for a given term.De�nition 3 Structural equivalence, denoted by �, is the smallest equivalence relationover terms de�ned by:2Inspired by Chemical Abstract Machine [3]. It can also be likened to the separation of structuralrules in Natural Deduction or to the treatment of �-conversion in [2].5
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(i) P � Q if P is �-convertible to Q(ii) (P;Q); R � P; (Q;R)(iii) jxjjyjP � jyjjxjP(iv) P;� � P(v) jxj� � �(vi) jxjP;Q � jxj(P;Q) (x 62 FN (Q))(vii) P;Q � Q;P(viii) fX(~x)= Pg(~a) � P [~a=~x][fX(~x) = Pg=X] :(ix) P � Q =) (P;R � Q;R ^ jxjP � jxjQ)where, in (viii), [fX(~x) = Pg=X] denotes syntactic substitution of term variables witha recursive structure3.Note that by rule (ii), we can soundly write P; Q; R (i.e. without parentheses).Similarly we will write jxyzjP etc. by rule (iii). Several examples of application ofstructural equivalence will be helpful in its understanding.Examples 3 Examples for structural equivalence. Please note that all of the multipleequations below can be one step from transitivity.(i) With the de�nition of I def= fX(x)= xy:( xy;X(x))g (this already appearsin (iii) of Examples 1), we have, by rule (viii),I(a) � ay:( ay; I(a))(ii) A message can freely move around (i.e. change its place in concurrent com-position) due to rule (vii).ax:P; Q;  av � ax:P;  av; Q �  av; ax:P; Q :(iii) The below abstractly states that a restricted name functions as a globallydistinct name.ax:( xv); jvj  av � ax:( xv); jzj  az � jzj(ax:( xv);  az)ReductionBelow we de�ne reduction (computation) of terms. The intuitive idea is a communicationevent occurs when a message and a receptor with a target and a corresponding handlesomehow meet together, and this is the only way for computation in the con�guration toproceed (as far as we do not consider its interaction with outside).3Because of the condition stated in De�nition 2 (iv), the problem of name collision never occurs.6
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De�nition 4 Reduction of terms, denoted by �!, is the smallest relation between termsinferred by: COM :  av; ax:P �! P [v=x]PAR : P1�!P 01P1; P2 �! P 01; P2RES : P�!P 0jxjP�!jxjP 0STRUCT : P 01�P1; P1�!P2; P2�P 02P 01�!P 02The reduction rules, together with structural rules, state basic mechanism of computationin our formal system. We will give some descriptive examples of reduction of terms.Examples 4 Examples of Reductions.(i) A simple reduction.ax:( cx); cy:(�);  av �  av; ax:( cx); cy:(�)�!  cv; cy:(�)�! � :(ii) With I as de�ned in (iii) of Examples 3, av; I(a) �  av; ax:( ax;I(a))�!  av; I(a)�!  av; I(a)�! :::::and so on. I(a) functions as if it were nothing.(iii) By (vi) of Examples 3, we have:jvj  av; ax:( xv) � jzj( az; ax:( xv))�! jzj  zvThis shows how scope opening, together with �-conversion, induces compu-tation in the face of restriction and name collision.In regard of functionality of the structural equivalence in its relationship to reduction re-lation, though the structural equivalence is somewhat weak in comparison with structuralcongruence in [17], it can nonetheless induce the same reduction relation. That is, if wedenote the stronger equivalence by �� (to be formulated as � in [17]) and correspond-ing reduction rule by ��!, then we have ( ��!�) = (�!� ��) where �!� etc. meansre
exive and transitive closure of the relation. We can even omit rules (iv) and (v) toget the same result. Detailed study of formulation of structural rules in combination withreduction and other transition rules is required.7
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4 Expressing CausalityThis section introduces two important concepts for constructing causal chains in ourpurely asynchronous formal system. They are sequentialization and selection. Alongthe way various primitive constructs for general computation are expressed in our formalsystem.SequentializationOur formal system is characterized with its lack of sequential constructors except wheninevitable (i.e. in value passing and resulting term generation). But as we see below, thiscan be realized by a chain of communication events, sequentialization of value passing inthis case.De�nition 5 (a) Notations for sequentialization. Suppose E is a term expression. Wede�ne sequential connectives � (of type N2 � fN) and � (of type N2 � fN � C) asfollows. 8<: ax�" def= �ax�v ~w def= ax:( xv; ax�~w)8<:  ax�":E def= E ax�y ~w:E def=  ax; xy: ax� ~w:EBased on these connectives, we de�ne the following expressions.De�nition 5 (b) Notations for communication of a series of names. We de�ne  a : ~vand a : ~x:E as follows. We suppose that r; c are not free in E and ~v, respectively. a : ~v def= jcj( ac; cx�~v)a : ~x:E def= az:jrj( zr�~x:E)Examples 5 Sequentialization of communication. With the condition thatr; c 62 FN (P ) [ fv1; v2g, a :v1v2; a :y1y2:P � jcj( ac; cx�v1v2); az:jrj( zr�y1y2:P )�! jcrj(cx�v1v2;  cr�y1y2:P )�! jcrj( rv1; cx�v2; ry1: cr�y2:P )�! jcrj(cx�v2;  cr�y2:(P [v1=y1]))�! jcrj( rv2; ry2:(E[v1=y1]))�! jcrjP [v1=y1][v2=y2]� P [v1=y1][v2=y2]8
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Thus two values v1 and v2 are passed respectively to y1 and y2, preserving their order.Because communication is taking place solely using private ports, no interference fromthe third party is possible after the �rst reduction. In a sense, c and r are functioningas private communication channels between P and Q. For any ~v and ~y with the samelength4, it is easy to verify the below. a : ~v; a : ~y:P �!� P [~v=~y] :Another example uses these sequentialization features nontrivially, showing the map-ping of our formal system to its superset calculus presented in [17].Examples 6 Encoding for the extended calculus. We replace expressions  av andfX(~x)= Cg(~a) with �av:P and !P respectively, and assume a structural rule!P � P; !Pand a reduction rule �av:P; a(x):Q �! P; Q[v=x] :Then a mapping from the expressions in the extended system to the reduced system,written as [[�]] , is given as follows.[[�av:P ]] = jcj( a :vc; c :":[[P ]])[[ax:P ]] = a :xy:( y :"; [[P ]])[[!P ]] = jcj( c :"; fX(x)= x :":([[P ]];  c :"; X(x))g(c)) (c 62 FN (P ))[[jxjP ]] = jxj[[P ]][[P;Q]] = [[P ]]; [[Q]][[�]] = � :The key idea of the coding is to let the receiver of a message send the activation messageas a reply to the sender, so that the subsequent behaviour of the sender (which is codedas another receptor, c : ":[[P ]] ) can become active. We do not verify the correctness ofthis mapping in this paper, which can be done by saying that if there is a reduction in theworld of superset expressions then the corresponding reduction does exist in our coding,and that if a term in our coding reduces to something then it has some further reductionwhich corresponds to some reduction in the domain of the superset.SelectionsA more advanced way of constructing a causal chain can be achieved through the use of se-lections. This is especially important for us because the formal system has no summation.We only deal with binary selection but it can be extended with ease.4This constraint is not essential since a little change in De�nition 5 (b) results in capability of copingwith cases where two lengths can be di�erent, by using new port generation.9
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De�nition 6 Notations for selection. Suppose E;E1; E2 are term expressions and i = 1or i = 2. We de�ne connectives for selection of type N4 � C and of type N3 � C2 asfollows. x : y1y2�iv : E def= x :y1y2:( yi :v; E) x :y1y2�1(z1:E1)�2(z2:E2) def=  x :y1y2; y1 :z1:E1; y2 :z2:E2The idea is for the �rst one to selectively send a message ( yiv) and generate aterm (E), and the second one to send the options ( x : y1y2) and wait for activation( y1 :z1:E1; y2 :z2:E2 ).To safely use these connectives, we again rely on new port name generation. Theencoding for natural numbers and the successor function are given below.Examples 7 Natural numbers and the successor function.0(n) def= fX(x)= (x : y1y2�1x : X(x))g(n)N 0(n) def= jpj(fX(xz)= (x : y1y2�2z : X(xz))g(np); N(p))S(s) def= s :nc:jzj(fX(xn)= (x : y1y2�2n : X(xp)g(n); cz))Note that a natural number is expressed as an object which knows its predecessor (p inabove), in contrast to the expression of a natural number as a function in �-calculus.Thus even \0" is de�ned recursively, which is necessary because its handle will be passedaround among its \users". c in the successor stands for a customer [1], the target of thereply. The predecessor and judgment of zero should decode these data structures (whena formal parameter is not necessary, we will omit it).Examples 8 The predecessor and judge-if-zero functions.P(s) def= s :nc:jy1y2j( n :y1y2�1(p:( c :p))�2(p:( c :p)))J (jtf) def= j :nc:jy1y2j( n :y1y2�1( c : t)�2( c :f)); 0(t); 00(f)Here true and false are expressed as 0 and 1 respectively.The next example shows more advanced branching structures.Examples 9 If and Parallel Or.C(i) def= i :bp1p2:jy1y2j( b :y1y2�1( p1 :")�2( p2 :"))O(o) def= o :b1b2c:js1:::s6j( b1 :s3s4�1( s1 :b1)�2( s2 :b1); b2 :s5s6�1( s1 :b2)�2( s2 :b2);s1 :x:( c :x; s1 :":�);s2 :x:s2 :x: c :x)10
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The combination of conditional expressions can easily construct \and", sequential \or",and \not", so we omit them here. The \parallel or" above uses the method similarto the one by Nierstrasz in [20], using a synchronizer to invoke only one action out ofmultiple candidates. This method is directly usable to realize the parallel case construct.Primitives for selection can also be used for method invocation in usual object-orientation.It can be proved that we can construct any computable functions on natural numbers bycombination of the constructs we have encoded and the use of recursively de�ned receptors.Finally we show a very simple stateful entity called a cell. It is primitive yet indeedpossesses typical properties of concurrent objects as we know. Its �rst option is \read",and the other option is \write". It contains some port name as its state. It gets o as itsoption (representing 0 or 1), and then decodes it to take an action accordingly. w is usedas a value to write, but when the option is \read", w is just neglected. Note that how itregenerates itself, with or without change of its state according to the option.Examples 10 A cell.L(lv) def= fX(xy)= x :owc:(jy1y2j  o :y1y2�1( c :y; X(xy))�2( X(xw)))g(lv)This small concurrent object concludes this section, and we proceed to see a bit of thesemantic framework of our formalism.5 SemanticsThis section gives several basic de�nitions for our semantic framework based on asyn-chronous interaction, and discusses its notable theoretical properties informally.Asynchronous InteractionOur semantic framework is based on the notion of observation by asynchronous experi-ments. This means that an experimenter just sends asynchronous messages to the con-cerned system, and (possibly continuing to send further messages) wait for output mes-sages from the con�guration. Thus it does not matter whether or not a message theexperimenter sends is actually consumed by some receptors in the con�guration. Thisnotion of asynchronous interaction can be given its formal representation as a labeledtransition system.The below shows a set of labels we will use for our labeled transition system.De�nition 7 Labels. The sets of labels for interaction L and of their series eL are givenby the following abstract syntax.L = � j #NN j "NN j "NjNjThe above labels have the following intuitive meanings.(1) � denotes the internal computation (unseen from the outside), thatis, the same thing as reduction (De�nition 4).11



www.manaraa.com

(2) # av means that the con�guration asynchronously gets a message av from outside. Seen di�erently, this rule tells us that the experi-menter sends a message to the con�guration.(3) "av means the con�guration asynchronously emits a message or theexperimenter receives such a message.(4) " ajvj means sending a value of a name restricted inside the con�g-uration, corresponding to scope opening in structural rules (De�nition3 (vi) ). For an experimenter, this means that he acquires a piece ofnew information which he has not had until then.Conventions 2 Notation.(i) We will let l; l0; ::: range over L,(ii) We denote FN (l) to be a set of port names in l except in the case l ="ajvj,then FN (l) = fag. Similarly BN (l) = � except BN ("ajvj) = fvg. N (l)is the union of these two.Based on these de�nitions and conventions, we de�ne the interaction relation as follows.It is a triple of (P; l; P 0), which is written as P l�! P 0.De�nition 8 Interaction of terms, denoted by l�!, is the smallest relation inferred by:IN : � #av�!  avOUT :  av "av�! �COM :  av; ax:P ��! P [v=x]PAR : P1 l�!P 01P1; P2 l�! P 01; P2 (BN (l) 62 FN (P2))RES : P l�!P 0jxjP l�!jxjP 0 (x 62 N (l))OPEN : P "ax�!P 0jxjP "ajxj�!P 0 (a 6= x)STRUCT : P 01�P1; P1 l�!P2; P2�P 02P 01 l�!P 02Intuitively, these rules de�ne behaviour of a con�guration in terms of its interaction withthe outside as asynchronous exchange of messages between them. In this regard theessential rule which is directly related with asynchronous character of the semantics, isthe �rst IN rule. Indeed this is the only rule which di�erentiates this semantic de�nitionfrom Milner's one in [17], yet which results in surprisingly di�erent semantic properties.For the purpose of comparison, we stipulate the synchronous counterpart of our semantics,which is a reformulated version of Milner's one.12
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De�nition 9 Synchronous interaction of terms, denoted by l�!s, is the smallest relationinferred by the same rules as De�nition 8, with l�! replaced by l�!s except IN rulewhich is reformulated as INs : ax:P #av�!s P [v=x]A few remarks on De�nition 8 are due here.(1) The rule clearly shows that ��! = �!.(2) Note the symmetry between IN and OUT rules in De�nition 8. This isdestroyed by introduction of INs rule. Also note that the correspondingforms of IN and OUT in �-calculus also enjoy a symmetry of theirown [17]. This implies the naturalness of synchronous semantics for�-calculus and asynchronous one for our system.(3) One interesting aspect of interaction rules lies in OPEN rule, whichdenotes that if one con�guration emits a private label to outside, it isregarded as free (i.e. public) from then on. This reminds us of Agha'snotion of \adding receptionists by communication to outside" in thecontext of the actor model [1].(4) It may seem rather extraordinary that because of IN rule in De�nition8, anymessage can come into the con�guration, regardless of the formsof inner receptors. But this is perfectly consistent with our intuitivenotion of asynchronous experiments. As the experimenter is not syn-chronously interacting with the con�guration (which means he shouldown corresponding input/output port names), he may send any mes-sage as he likes. Moreover it does not result in di�culties in provingvarious semantic properties as far as we know.Asynchronous BisimulationAs we noted already, from the experimenter's point of view, IN rule states that theexperimenter sends some message to the concerned con�guration and OUT rule stateshe receives some message from the con�guration. This recaptures Milner's notion ofexperiments (cf. [13]) in the setting of asynchronous communication. Below we de�ne(weak) bisimulation, or observation equivalence, as a semantic representation of this newnotion of experiments. While simulation preorder should be regarded as somewhat morefundamental than the equivalence, within this elementary exposition we con�ne ourselvesto bisimulation.De�nition 10 Asynchronous bisimulation. Let us de�ne l̂=) as ��!� l�! ��!� ifl 6= � and if else as ��!�. Then P1 and Q1 are asynchronously bisimilar, denoted byP1 �a Q1 if and only if (P1; Q1) 2 R where for any (P;Q) 2 R we have(i) Whenever P l�! P 0, for some Q0, Q l̂=) Q0 and (P 0; Q0) 2 R .13
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(ii) R is symmetric.For comparison again, we de�ne its synchronous counterpart.De�nition 11 Synchronous bisimulation. Let us de�ne l̂=)s as ��!s� l�!s ��!s�if l 6= � and if else as ��!s�. Then P1 and Q1 are synchronously bisimilar, denoted byP1 �s Q1 if and only if (P1; Q1) 2 R where for any (P;Q) 2 R we have(i) Whenever P l�!s P 0, for some Q0, Q l̂=)s Q0 and (P 0; Q0) 2 R .(ii) R is symmetric.Note that De�nition 11 is simpler than the corresponding one in [15], which needs anadditional condition for equivalence after substitution of names. This may come from theformulation of their IN rule as shown below.ax:P #ax�!s PThe rule means that the received name should not be the same as any free names inP . We do not discuss this point further except pointing out that the following reduction(not interaction) is allowed both in our formal system and (in the corresponding form) in�-calculus. We hope that this will provide an argument for our formulation of IN rule. av; ax:( xc; vy:P ) �!  vc; vy:P :A few examples will be helpful to understand how asynchronous bisimulation works.Examples 11 Asynchronous bisimulation (1).(i) Replication. Let us assume a new notation (cf. Examples 6).!P def= jcj( c :"; fX(x)= x :":(P;  c :"; X(x))g(c)) (c 62 FN (P )) :Then the following holds. !P �a P; !P :To verify, take a relation ( (!P; R); (P; !P; R) ) where R can be anarbitrary term expressions. This is an example where both �a and �shold.(ii) The successor function. Using notation in Examples 7,jszj(0(z); S(s);  s :zc) �a jxj(1(x); cx)(to check, just compute). Again we see both �a and �s hold.14
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(iii) Permutation in input. P and Q are given as follows.P def= ax:(by:R) Q def= by:(ax:R)Then we have both P 6�s Q and P 6�a Q . The former obviously holdsand the latter can be di�erentiated byP #av�!  av; ax:(by:R) ��! by:R[v=x]butQ #av�!  av; by:(ax:R) "=)  av; by:(ax:R) "av�! by:ax:R :Please note that the only di�erence comes from the message which comes inand just goes out, while it is possible for it to get consumed in one transition5.None of the above examples show any di�erence between two bisimulations. As the orderof sending messages generally cannot matter in asynchronous communication, the nextexample may seem rather promising.P def= jlj( lz; lz:( av; jmj( mz; mz: bw)))and Q def= jlj( lz; lz:( bw; jmj( mz; mz: av)))Here we have P �a Q as expected, providing an interesting comparison with theexpressions in �-calculus, �a:�b:� and �b:�a:� . However the example does not distinguish�a and �s, because P �s Q holds. Is there any case where one can di�erentiatebetween these two equivalence theories? The next example shows that such a case doesexist.Examples 12 Asynchronous bisimulation (2). Let us remember the expression I inSection 3 ( Example 3 (iii) and Example 4 (ii) ). For this special agent, the followingholds for any a . I(a) �a �To verify, make a relation R = ( (I(a); P ); P ), where P is zero or more messageswithout bound names.(i) Firstly, if I(a); P #av�! I(a); P; av :then clearly P #av�! P; av :where ( (I(a); P; av); (P; av) ) 2 R: We can similarly verify in thecase I(a); P "av�! I(a); P 0 :5This shows that transition relation as formulated in De�nition 8 lacks the notion of locality.15
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(ii) Next if I(a); P ��! Q :then the only possibility is there is some P 0 such thatP � P 0;  avbut then I(a);  av; P 0 ��! I(a);  av; P 0 � I(a); PAs obviously P "=) P , this case holds.As the symmetric case holds trivially,R[R�1 is bisimulation, and just by taking P def= � ,the argument holds.This example is notable in two respects.(1) Because we have �s � �a (the proof is not so di�cult), the above exampleshows that this inclusion is strict.(2) Another fact is that �a is a congruence relation (as well as �s ) in our system(both proofs are rather long). Thus the example shows that the term I(a) orany term which is bisimilar to it can be added or deleted from a con�gurationarbitrarily without changing its meaning. Based on this fact, there is a methodto construct �s from �a by adding appropriate I(x)'s to con�gurations. Thissuggests the exact range of di�erence between �a and �s .The di�erence between �a and �s is important in that it suggests asynchronous inter-action (the relation \ l�!") is more abstract than synchronous one (\ l�!s") in the sensethat it does not care the order of consecutive inputs or consecutive outputs. Hence we willdeal with collections (to be exact, multisets) of messages rather than their sequences. Thisgives rise to an elegant mathematical treatment of asynchronous interaction semantics,and the property can be directly re
ected in our equivalence theory if we add a certainlocality notion. Then we have ax:by:P �0a by:ax:P (cf. Example 11 (iii) ). We leave thefurther details to the subsequent exposition to be published elsewhere in the near future.6 ConclusionWe have seen so far that a formal system based on the notion of pure asynchronouscommunication can be constructed with full expressive power and important semanticproperties. The investigation of the concurrency formalism based on asynchronous com-munication has just begun, and there are many problems to be solved. Other than thestudy on asynchronous interaction semantics and its relationship with objects notion, twoimportant points should be pointed out.(1) We should study whether the construction (or reduction) we performed in thisexposition can be applied to CCS or other process calculi formalisms. Especiallywe should study what results one will obtain for higher-order process calculiwhich passes processes [21, 4]. 16
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