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Abstract

This paper presents a formal system based on the notion of objects and asynchronous
communication. Built on Milner’s work on 7-calculus, the communication primitive
of the formal system is purely asynchronous, which makes it unique among vari-
ous concurrency formalisms. Computationally this results in a consistent reduction
of Milner’s calculus, while retaining the same expressive power. Seen semantic-
ally asynchronous communication induces a surprisingly different framework where
bisimulation is strictly more general than its synchronous counterpart. This pa-
per shows basic construction of the formal system along with several illustrative
examples.

1 Introduction

The formal system introduced in this paper is intended to accomplish two purposes. First,
it provides a simple and rigorous formalism which encapsulates essential features of con-
current object-orientation [26, 25]. Being successful as a programming methodology for
dynamic concurrent computing, its theoretical contents are far from well-understood,!
leaving theorists and practitioners without a core theory on which they can reason and
develop further ideas. Second, it offers a possible foundation for concurrency theory
which is quite different from the usual one in the sense that the formalism is purely
based on asynchronous communication, both computationally and semantically. The
usual observation-based equivalence theory for processes is recaptured as asynchronous
bisimulation for objects where asynchronous experiments induces a somewhat more gen-
eral semantic framework.

*Appeared in Proc. The Fifth European Conference on Object-Oriented Programming, LNCS, July
1991,Springer-Verlag. Revised in August 1991.

T Also with Sony Computer Science Laboratory Inc. 3-14-13 Higashi-Gotanda, Shinagawa-ku, Tokyo,
141, Japan

!Though recently several important works appeared in this context including [6, 12, 17].
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The formalism is based on a series of studies on a port passing process calculus now
called w-calculus, initiated by Nielsen and Engberg [18], reformulated by Milner and his
colleagues [15], and developed in a crucial way by Milner [17]. Especially [17] has been
essential in our construction due to its separation of structural rules from transition rules,
and in its distinction between computational transition and semantic transition. One
interesting thing is that the capability to generate and pass communication ports turns
out to be essential not only for object-orientation (which is obvious) but also for control
of causality chains in the face of pure asynchrony. This reminds us of the studies on
the actor model of computation by Hewitt and his colleagues [8, 7, 5, 1]. Also readers
may refer to the authors’ work on conceptual framework for open distributed computing
environments [22, 23] to understand their general orientation in a different context.

This paper only provides basic concepts and definitions for the formal system along
with several illustrative examples, leaving the full presentation of our theoretical results
to the coming exposition. Section 2 defines the basic syntax and other constructs of the
formal system. Section 3 introduces reduction relation which defines the basic compu-
tational mechanism in combination with structural rules. Section 4 provides important
primitive constructs for our system and shows that they can be used to encode a frag-
ment of 7m-calculus [17] which is a superset of our formalism. Section 5 reviews the general
semantic framework of asynchronous bisimulation, giving basic definitions and examples.
Object-orientation in our semantic framework is also discussed. Finally Section 6 con-
cludes the paper.

2 Syntax and Bindings

This section first briefly summarizes the basic idea of our formalism, then provides defin-
itions for syntax and bindings.

Basic Framework

In the formalism presented hereafter, the notions of objects and communication are cap-
tured in the following way.

e An object is a collection of receptors and pending messages. A receptor has a
handle (an input port) and a carrier (a formal parameter) at its head, and consumes
a message to receive the value at its carrier which carries the value to its body. Then
this body generates zero or more receptors and zero or more messages. The original
receptor just disappears. Notationally, it is expressed as ax.P (a is a handle, z is a
carrier, and P is a body). All receptors within an object may operate concurrently
and asynchronously.

e A message is a simple data structure which carries a piece of information to its
target. It should have its target and value, each being supposed to be a port name
(i.e. no value is considered except names of ports themselves). The notation for
a message is < av (a is a target, v is a value). Some of generated messages may
go out (becoming output messages), some may be consumed by receptors (causing
internal configuration change), and some may be just pending within the object.
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The computational implication of this framework is that a message will be consumed by
a receptor if and only if its target is the same as the handle of the receptor, that is, < av
will be consumed by ax.P, but not by bx.P. Existence of multiple receptors in an
object implies an object may have multiple input ports, possibly with duplicate names.
The port names are only values to be considered here, sent by messages and consumed
by receptors. A configuration will generate new port names which extends the domain of
computation.

Syntax

Syntactically our formal system reduces, not extends, constructs in process calculi[13, 14,
9, 16], to incorporate asynchronous communication. The key idea is to express asyn-
chronous messages as output processes without subsequent behaviour. That is, av.P (a
process which outputs v through port ) is reduced to < av (a message to the target
a with a value v). In Section 4 we will see that this reduction does not result in loss
of expressive power. Below are syntactic definitions of port names, messages, receptors
(including recursively defined ones), and general configurations called term expressions.
Term variables are necessary for recursively defined receptors. In the right-hand side of
each definition, we give formal designation for these syntactic constructs.

Definition 1 The sets of port names N, of sequences of port names N, of term variables
V, and of term expressions C, are given by the following abstract syntax.

N T | N’ (port names)
N = ¢ | NN (sequences of names)
V = X| \a (term variables)
C = NN (a message)
| NN.C (a receptor)
| {V(N) = NN.C}(N) (a recursively defined receptor)
| V(N) (a term variable with parameters))
| |IN|C (scope restriction)
| C,C (concurrent composition)
| A (the null term) M

There are several important conventions we will obey hereafter.

Conventions 1 Conventions on notation and designation.

(i) Non-capital alphabets (a, b, ¢, ..) range over N, the set of port names. We will
often call port names as simply names. We assume that different alphabets
denote different port names unless specified otherwise.

(ii) a, b, ¢ ... range over N.
(iii) X, Y, Z, ... range over V.
(iv) P, Q, R, ... (sometimes A, B, C, ...) range over C, which are sometimes

called configurations. Specifically, M, M’ ... ranges over the subsort of C
which are of the form + NIN.
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(v) Z, J, K etc. denote incomplete expressions.

(vi) We will assume that the constructor “,” is the weakest in association, others

being of the same precedence.

(vii) In « av, we call a a target, v a value. In ax.P, we call the portion ax a
head, P a body. The body expression is guarded by the head part. In the
head, a is called a handle (or more descriptively input port), x a carrier. In
{V(#)=yz.C}(?) and X(a), &,a and v are called parameter parts, and their
preceding sections main parts. Then we say ¥ is a parameter of V etc. [ |

Following these conventions, we will explain some of constructors and their intuitive mean-
ing as follows.

Examples 1 Meaning of constructors.

(i) «—av . A message with a target a and a value v. (Note that both are port
names. )

(ii) ax.(¢—ax). A receptor with a handle ¢ which, when it consumes a message,
creates the same one and dies. Note that the first occurrence of x binds the
second z.

(i) {X(2)=2y.(« 2y, X(z))}a). A receptor with a handle ¢ which, when it
consumes a message, creates the same one and regenerates itself. Note that
the first occurrence of x is instantiated to a at the end, and that the x binds
the later occurrences of z.

(iv) ax.P, + av, by.Q) . Two receptors and one message. The left receptor
may consume the message.

(v) az.(Jv] < cv), < av . The first two occurrences of v and the third
one denote different port names, because the first one is declared as private
(restricted) and the third one is not within the same scope. Restricted names
are meant to have different values from those which are outside of the scope,
even syntactically they are the same. [ |

Free and Bound Names, and Substitution
The following gives definitions for bound and free names, and substitutions.
Definition 2 Free and Bound names, substitution.

(i) In ax.P, a is free, x is bound, and free occurrences of = in P are bound by
the carrier z. In < av, both a and v are free. In |v|P, v is bound, and free
occurrences of v in P are bound by |v|. In {X (&)= C}(a), names in a are
free, and names in & binds their occurrences in C.

(ii) Similarly in {X (&)= C}(a), we define free occurrences of X in C and say
those occurrences are bound by X at the top. Hereafter we will only deal
with the cases where no term variables occur free at the top configuration.
We also assume that the length (as a sequence) of the parameter of a bound
term variable should correspond to the parameter of the term variable which
binds ut.
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(iii) N(P) is a set of names in P. FN(P) (resp. BN(P) ) is a set of free
(resp. bound) names in P. HAN(P) denotes a set of names used for handles
of receptors in the subexpressions of P.

(iv) We assume that, in the expression {X(7)= C}(a), FN(C) C {2}, and also
any pair of names in & are pairwise distinct.

(v) Plv/x] denotes the result of (inductively) substituting the free occurrences
of x in P for v, following the standard convention for name collision (cf. [2]).

(vi) We inductively define a-convertibility among terms starting with ax.P is o-
convertible to ay.(P[y/x]) if y is not free in P, similarly |z|P is a-convertible

to |y|(Ply/x]) with the same condition. We will assume [x/y] is stronger

than any other constructor (i.e. |z|P[v/x] L |z|(P[v/x]) etc.). |

We will give some examples of substitutions.

Examples 2 Ezamples of substitutions.

(i) («av)[a/x] = av.
(ii) (Jv| ¢ av)[v/x] = |w| + vw. Here we first perform an a-conversion, then

do the substitution. Remember restricted port names denote values different
from those outside of the scope. [ |

Now we are ready to define syntactic equivalence relation called structural equivalence
and reduction (computation) rule for our formal system.

3 Structural Equivalence and Reduction

Structural Equivalence

In port passing calculi, transition rules become quite complicated because of intricate in-
teraction between the port passing concept and scoping rules. It was found by Milner in
[17], however, the introduction of congruence relation for syntactic terms, modulo which
transition rules are defined, results in a surprisingly compact and tractable formulation.
The idea is to incorporate within the structural rules tacit yet basic semantics of vari-
ous constructors, freeing transition rules from expressing those static features laboriously?.
Thus we can concentrate on truly significant aspects of computational and semantic prop-
erties of the target system.

Below is our formulation of such structural rules, which is generally based on that of
[17], yvet somewhat weakened to make computational aspects explicit. Notable facts are
(a) the equation cannot be applied to guarded expressions (i.e. the body of receptors),
so that = is not a congruence relation, and (b) the relation induced by (ii), (iii), and
(vi)—(ix) is finite for a given term.

Definition 3 Structural equivalence, denoted by =, is the smallest equivalence relation
over terms defined by:

2Inspired by Chemical Abstract Machine [3]. It can also be likened to the separation of structural
rules in Natural Deduction or to the treatment of a-conversion in [2].

www.manaraa.com



(i) P =@ if P is a-convertible to @
(i) (P.Q).R = P.(Q,R)
(i) [oly|P = |ylle|P
(iv) P,A=P
(v) |[z|A=A
(i) [WP.Q=10(P.Q)  (r ¢ FN(Q)
(vii) P,Q = Q, P
(viil) {X(3)= P}(@) = Pla/[{X(5) = P}/X] .
(ix) P=Q = (PR=Q,R A |z|P = |2|Q)

where, in (viii), [{X(&) = P}/X] denotes syntactic substitution of term variables with
a recursive structure®. |

Note that by rule (ii), we can soundly write P, @, R (i.e. without parentheses).
Similarly we will write |zyz|P etc. by rule (iii). Several examples of application of
structural equivalence will be helpful in its understanding.

Examples 3 Fzamples for structural equivalence. Please note that all of the multiple
equations below can be one step from transitivity.

(i) With the definition of Z et {X(2)=2y.(¢<2y, X(2))} (this already appears
in (iii) of Examples 1), we have, by rule (viii),

Z(a) = ay.(«+ay, Z(a))

(ii) A message can freely move around (i.e. change its place in concurrent com-
position) due to rule (vii).

ar.P, Q, «<av = ax.P, +av, ) = <+av, ax.P, Q.

(iii) The below abstractly states that a restricted name functions as a globally
distinct name.

ax.(«av), |v| —av = ax.(+av), |z| +—az = |z|(ax.(+2v), +az) R

Reduction

Below we define reduction (computation) of terms. The intuitive idea is a communication
event occurs when a message and a receptor with a target and a corresponding handle
somehow meet together, and this is the only way for computation in the configuration to
proceed (as far as we do not consider its interaction with outside).

3Because of the condition stated in Definition 2 (iv), the problem of name collision never occurs.
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Definition 4 Reduction of terms, denoted by —, is the smallest relation between terms
inferred by:

COM : —av, ax.P — Plv/z]
PAR: P17P2—>P1/,P2
) P—P
RES : T P— [P
. PIIE_Pl, P1—>P2, PZEPZ/
STRUCT : fp—y [ |

The reduction rules, together with structural rules, state basic mechanism of computation
in our formal system. We will give some descriptive examples of reduction of terms.

Examples 4 Ezamples of Reductions.

(i) A simple reduction.

av.(«cx), cy.(N), «av = av, ax.(+cx), cy.(A)
— v, cy.(A)
— A

(ii) With Z as defined in (iii) of Examples 3,

—av, I(a) = < av, ax.(+ax,Z(a))
— —av, I(a)
— —av, I(a)

and so on. Z(a) functions as if it were nothing.

(iii) By (vi) of Examples 3, we have:

|| «—av, ax.(«av) = |z|(+az, ax.(+2v))
— |z 2o

This shows how scope opening, together with a-conversion, induces compu-
tation in the face of restriction and name collision. [ |

In regard of functionality of the structural equivalence in its relationship to reduction re-
lation, though the structural equivalence is somewhat weak in comparison with structural
congruence in [17], it can nonetheless induce the same reduction relation. That is, if we
denote the stronger equivalence by = (to be formulated as = in [17]) and correspond-
ing reduction rule by —, then we have (—>*) = (—* =) where —* etc. means
reflexive and transitive closure of the relation. We can even omit rules (iv) and (v) to
get the same result. Detailed study of formulation of structural rules in combination with
reduction and other transition rules is required.
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4 Expressing Causality

This section introduces two important concepts for constructing causal chains in our
purely asynchronous formal system. They are sequentialization and selection. Along
the way various primitive constructs for general computation are expressed in our formal
system.

Sequentialization

Our formal system is characterized with its lack of sequential constructors except when
inevitable (i.e. in value passing and resulting term generation). But as we see below, this
can be realized by a chain of communication events, sequentialization of value passing in
this case.

Definition 5 (a) Notations for sequentialization. Suppose E is a term expression. We
define sequential connectives < (of type N? x N) and > (of type N* x N x C) as

follows.
{ ax<g def A

L od .
ar<ww = ax.(< v, ax<w)

—ameE Y E
—aa>yw. B & —ax, 2y. «—ax>w.E A

Based on these connectives, we define the following expressions.

Definition 5 (b) Notations for communication of a series of names. We define < a: 0
and a:%.F as follows. We suppose that r, ¢ are not free in E and 0, respectively.

%

S|

0 = e|(+ae, cx<w)
E Y wlr|(+2>iE) m

R

a:x.

Examples 5 Sequentialization of communication. With the condition that

roc € FN(P)U{vy, vy},

—a:vivy, a:Yyys. P le|(«—ac, cx<wivy), az.|r|(+ zr>y1ys.P)
ler|(ex <wyva, < er>y1y2.P)

ler|(¢rvy, cx<wa, rY1. ¢ cr>y2.P)
ler|(cx<wa, < er>ya.(Plvi/n]))
|er|(«=rv2, ry2.(E[vi/y1]))

|er| Plo /y1][va/ye]

Ploy/yi][vz/y2] W

(T A A
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Thus two values v; and vy are passed respectively to y; and ys, preserving their order.
Because communication is taking place solely using private ports, no interference from
the third party is possible after the first reduction. In a sense, ¢ and r are functioning
as private communication channels between P and (). For any © and y with the same
length?, it is easy to verify the below.

—a:v, a:y.P —" P[0/7]

Another example uses these sequentialization features nontrivially, showing the map-
ping of our formal system to its superset calculus presented in [17].

Examples 6 Encoding for the extended calculus. We replace expressions < av and
{X(#)=C}a) with av.P and !P respectively, and assume a structural rule

P = P, P

and a reduction rule

av.P, a(z).Q — P, Qv/x] .

Then a mapping from the expressions in the extended system to the reduced system,
written as [-], is given as follows.

[av.P] = |e|(«a:ve, c:e[P])
[ax.P] = a:2y.(«y:e, [P])
I'P] = |d(+c:e, {X(z)=a:e.([P], +c:e, X(z))}Hc)) (c& FN(P))
[2lP] = |ol[P]
7.0l = [PLI]
[A] = A. [

The key idea of the coding is to let the receiver of a message send the activation message
as a reply to the sender, so that the subsequent behaviour of the sender (which is coded
as another receptor, c:e.[P] ) can become active. We do not verify the correctness of
this mapping in this paper, which can be done by saying that if there is a reduction in the
world of superset expressions then the corresponding reduction does exist in our coding,
and that if a term in our coding reduces to something then it has some further reduction
which corresponds to some reduction in the domain of the superset.

Selections

A more advanced way of constructing a causal chain can be achieved through the use of se-
lections. This is especially important for us because the formal system has no summation.
We only deal with binary selection but it can be extended with ease.

4This constraint is not essential since a little change in Definition 5 (b) results in capability of coping
with cases where two lengths can be different, by using new port generation.
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Definition 6 Notations for selection. Suppose E, Eq, Ey are term expressions and ¢ = 1

or i = 2. We define connectives for selection of type N* x C and of type N° x C? as
follows.

def
riyye<iv: E = iy (+yitv, E)

def
—aiyyal>1(21.E1) Da(20.B2) = —aiyiyz, viiz.E, oy B A

The idea is for the first one to selectively send a message (< y;v) and generate a
term (E), and the second one to send the options (<  : y1y2) and wait for activation
(v1:21.E1, y2:22.E5 ).

To safely use these connectives, we again rely on new port name generation. The
encoding for natural numbers and the successor function are given below.

Examples 7 Natural numbers and the successor function.

0(n) ¥ {X(z)=(z: prya<ia: X(2))}(n)
N'(n) € pl({X(22)= (¢ : y1y2<22 : X(22))}(np), N(p))

def

S(s) = s:nelz|({X(xn)= (v y1ya<ian : X(xp)}(n), +cz)) B

Note that a natural number is expressed as an object which knows its predecessor (p in
above), in contrast to the expression of a natural number as a function in A-calculus.
Thus even “0” is defined recursively, which is necessary because its handle will be passed
around among its “users”. ¢ in the successor stands for a customer [1], the target of the
reply. The predecessor and judgment of zero should decode these data structures (when
a formal parameter is not necessary, we will omit it).

Examples 8 The predecessor and judge-if-zero functions.

P(s) € sinelynl(&nygn1(p.(+cip)) B2 (p.(«c:p)))
TGt X jinclyyal(eniypt (¢ cit) sa(eci f), 0#), 0(f) m

Here true and false are expressed as 0 and 1 respectively.
The next example shows more advanced branching structures.

Examples 9 If and Parallel Or.

C(i) = 1:0p1p2. Y1y | (4= b yiya > (= prie) o (4= p2ie))
O(o) def 0:b1byc.|s1...56]
(= b1:83840>1 (4= 81:01) D2 (¢—52:01),
by 855601 (= 51:Da) o4 52:02),
spix(e—ciay spieN),

Sp:x.83:x. —cix) A

10
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The combination of conditional expressions can easily construct “and”, sequential “or”,
and “not”, so we omit them here. The “parallel or” above uses the method similar
to the one by Nierstrasz in [20], using a synchronizer to invoke only one action out of
multiple candidates. This method is directly usable to realize the parallel case construct.
Primitives for selection can also be used for method invocation in usual object-orientation.
It can be proved that we can construct any computable functions on natural numbers by
combination of the constructs we have encoded and the use of recursively defined receptors.
Finally we show a very simple stateful entity called a cell. It is primitive yet indeed
possesses typical properties of concurrent objects as we know. Its first option is “read”,
and the other option is “write”. It contains some port name as its state. It gets o as its
option (representing 0 or 1), and then decodes it to take an action accordingly. w is used
as a value to write, but when the option is “read”, w is just neglected. Note that how it
regenerates itself, with or without change of its state according to the option.

Examples 10 A cell.
L) ¥ X (zy)= 2:0we.(|yy] < oyt (< iy, X(zy)) 2 X(zw))) (i)

This small concurrent object concludes this section, and we proceed to see a bit of the
semantic framework of our formalism.

5 Semantics

This section gives several basic definitions for our semantic framework based on asyn-
chronous interaction, and discusses its notable theoretical properties informally.

Asynchronous Interaction

Our semantic framework is based on the notion of observation by asynchronous experi-
ments. This means that an experimenter just sends asynchronous messages to the con-
cerned system, and (possibly continuing to send further messages) wait for output mes-
sages from the configuration. Thus it does not matter whether or not a message the
experimenter sends is actually consumed by some receptors in the configuration. This
notion of asynchronous interaction can be given its formal representation as a labeled
transition system.
The below shows a set of labels we will use for our labeled transition system.

Definition 7 Labels. The sets of labels for interaction L and of their series L are given
by the following abstract syntax.

L = 7| J[NN| 1NN | TN|N]| |
The above labels have the following intuitive meanings.

(1) 7 denotes the internal computation (unseen from the outside), that
is, the same thing as reduction (Definition 4).

11
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(2) ) av means that the configuration asynchronously gets a message
< av from outside. Seen differently, this rule tells us that the experi-
menter sends a message to the configuration.

(3)  Tav means the configuration asynchronously emits a message or the
experimenter receives such a message.

(4)  Talv] means sending a value of a name restricted inside the config-
uration, corresponding to scope opening in structural rules (Definition
3 (vi) ). For an experimenter, this means that he acquires a piece of
new information which he has not had until then.

Conventions 2 Notation.

1) We will let L.I'.... range over L
(i) A g ,

(i1) We denote FAN (1) to be a set of port names in [ except in the case [ =T alv|,
then FN(l) = {a}. Similarly BN (l) = ¢ except BN (Talv|) = {v}. N(I)

1s the union of these two. [ ]

Based on these definitions and conventions, we define the interaction relation as follows.
It is a triple of (P, [, P"), which is written as P L p.

Definition 8 Interaction of terms, denoted by —l>, is the smallest relation inferred by:

IN: A
OUT : —av 2 A
COM : —av, ax.P - Plv/z]
l /
PAR : h—h (BN(1) ¢ FN(Py))
Pl, P2 — Pll, P2
P-Lp
RES : L=l r g N(I
|z|P—L5 || P’ (=g N )
Taz
OPEN : P%ﬂley (a # x)
|z|P— P’
sTrUCT . PIEPi P—Py, =P, .
pP-Lp

Intuitively, these rules define behaviour of a configuration in terms of its interaction with
the outside as asynchronous exchange of messages between them. In this regard the
essential rule which is directly related with asynchronous character of the semantics, is
the first IN rule. Indeed this is the only rule which differentiates this semantic definition
from Milner’s one in [17], yet which results in surprisingly different semantic properties.
For the purpose of comparison, we stipulate the synchronous counterpart of our semantics,
which is a reformulated version of Milner’s one.

12
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Definition 9 Synchronous interaction of terms, denoted by —l>5, is the smallest relation

inferred by the same rules as Definition 8, with N replaced by —l>s except IN rule
which is reformulated as

IN, : az.P 25, Plv/z] [ |

A few remarks on Definition 8 are due here.

(1)  The rule clearly shows that —/ = —s.

(2) Note the symmetry between IN and OUT rules in Definition 8. This is
destroyed by introduction of IN, rule. Also note that the corresponding
forms of IN and OUT in m-calculus also enjoy a symmetry of their
own [17]. This implies the naturalness of synchronous semantics for
m-calculus and asynchronous one for our system.

(3)  One interesting aspect of interaction rules lies in OPEN rule, which
denotes that if one configuration emits a private label to outside, it is
regarded as free (i.e. public) from then on. This reminds us of Agha’s
notion of “adding receptionists by communication to outside” in the
context of the actor model [1].

(4) It may seem rather extraordinary that because of IN rule in Definition
8, any message can come into the configuration, regardless of the forms
of inner receptors. But this is perfectly consistent with our intuitive
notion of asynchronous experiments. As the experimenter is not syn-
chronously interacting with the configuration (which means he should
own corresponding input/output port names), he may send any mes-
sage as he likes. Moreover it does not result in difficulties in proving
various semantic properties as far as we know.

Asynchronous Bisimulation

As we noted already, from the experimenter’s point of view, IN rule states that the
experimenter sends some message to the concerned configuration and OUT rule states
he receives some message from the configuration. This recaptures Milner’s notion of
experiments (cf. [13]) in the setting of asynchronous communication. Below we define
(weak) bisimulation, or observation equivalence, as a semantic representation of this new
notion of experiments. While simulation preorder should be regarded as somewhat more
fundamental than the equivalence, within this elementary exposition we confine ourselves
to bisimulation.

Definition 10 Asynchronous bisimulation. Let us define :l> as — Ly T f
[ # 7 and if else as 73", Then P, and ()1 are asynchronously bisimilar, denoted by
Py ~, @ if and only if (P;,Q1) € R where for any (P, Q) € R we have

(i) Whenever P HLIN P’, for some @', Q) :l> Q' and (P,Q)eR.

13
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1) R 1s symmetric. [ |
(i) y

For comparison again, we define its synchronous counterpart.

*

Definition 11 Synchronous bisimulation. Let us define :l>5 as L>5* #5 s,

if | # 7 and if else as —T4,". Then P; and ()1 are synchronously bisimilar, denoted by
Py ~; @ if and ounly if (P, Q1) € R where for any (P, Q) € R we have

(i) Whenever P #5 P’, for some (), Q) :i>s Q' and (P',Q")eR.
(ii) R is symmetric. [ |

Note that Definition 11 is simpler than the corresponding one in [15], which needs an
additional condition for equivalence after substitution of names. This may come from the
formulation of their IN rule as shown below.

ax.P ﬂs P

The rule means that the received name should not be the same as any free names in
P. We do not discuss this point further except pointing out that the following reduction
(not interaction) is allowed both in our formal system and (in the corresponding form) in
m-calculus. We hope that this will provide an argument for our formulation of IN rule.

—av, ax.(«zc, vy.P) — <+ve, vy.P

A few examples will be helpful to understand how asynchronous bisimulation works.

Examples 11 Asynchronous bisimulation (1).
(i) Replication. Let us assume a new notation (cf. Examples 6).
P Y o|(+—cie, {X(2)=2:e.(P, cie, X(2)}e) (¢ & FN(P)) .
Then the following holds.
P ~, P, IP .

To verify, take a relation ( (!P, R), (P, !P, R) ) where R can be an
arbitrary term expressions. This is an example where both =, and =,

hold.

(i1) The successor function. Using notation in Examples 7,
|sz](0(z), S(s), —s:z¢) =, |z|(1(z),cx)

(to check, just compute). Again we see both =2, and =, hold.
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(iii) Permutation in input. P and @ are given as follows.
P ax.(by.R) Q & by.(azx.R)

Then we have both P %, ) and P %, @ . The former obviously holds
and the latter can be differentiated by

p —av, azx.(by.R) —— by.R[v/z]
but
Q RN —av, by.(ax.R) = < av, by.(azx.R) BN by.ax.R .

Please note that the only difference comes from the message which comes in
and just goes out, while it is possible for it to get consumed in one transition®.
|

None of the above examples show any difference between two bisimulations. As the order
of sending messages generally cannot matter in asynchronous communication, the next
example may seem rather promising.

p [|(«1z, lz.(<av, |m|(<—mz, mz. < bw)))

and
Q « |(«1z, lz.(«=bw, |m|(«<—mz, mz. < av)))

Here we have P =, () as expected, providing an interesting comparison with the
expressions in m-calculus, @.b.A and b.a.A . However the example does not distinguish
~, and =, because P =, () holds. Is there any case where one can differentiate
between these two equivalence theories? The next example shows that such a case does
exist.

Examples 12 Asynchronous bisimulation (2). Let us remember the expression 7 in
Section 3 ( Example 3 (iii) and Example 4 (ii) ). For this special agent, the following

holds for any a .
Z(a) =~, A

To verify, make a relation R = ( (Z(a),P), P ), where P is zero or more messages
without bound names.

(i) Firstly, if
Z(a), P RN Z(a), P, +av .

then clearly

p P —av.

where ( (Z(a), P, + av), (P,< av) ) € R. We can similarly verify in the
case

I(a),P 2% T(a),P' .

>This shows that transition relation as formulated in Definition 8 lacks the notion of locality.
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(ii) Next if
I(a),P — Q.

then the only possibility is there is some P’ such that
P = P, av
but then
I(a), +av, P" 5 ZI(a), +av, P = ZI(a), P
As obviously P == P, this case holds.

As the symmetric case holds trivially, RUR™! is bisimulation, and just by taking P A ,
the argument holds. [ |

This example is notable in two respects.

(1) Because we have ~, C =, (the proof is not so difficult), the above example
shows that this inclusion is strict.

(2)  Another fact is that =, is a congruence relation (as well as ~; ) in our system
(both proofs are rather long). Thus the example shows that the term Z(a) or
any term which is bisimilar to it can be added or deleted from a configuration
arbitrarily without changing its meaning. Based on this fact, there is a method
to construct =, from ~, by adding appropriate Z(x)’s to configurations. This
suggests the exact range of difference between ~, and = .

The difference between ~, and =2, is important in that it suggests asynchronous inter-

action (the relation “—l>”) is more abstract than synchronous one (“—l>s”) in the sense
that it does not care the order of consecutive inputs or consecutive outputs. Hence we will
deal with collections (to be exact, multisets) of messages rather than their sequences. This
gives rise to an elegant mathematical treatment of asynchronous interaction semantics,
and the property can be directly reflected in our equivalence theory if we add a certain
locality notion. Then we have ax.by.P =/ by.ax.P (cf. Example 11 (iii) ). We leave the
further details to the subsequent exposition to be published elsewhere in the near future.

6 Conclusion

We have seen so far that a formal system based on the notion of pure asynchronous
communication can be constructed with full expressive power and important semantic
properties. The investigation of the concurrency formalism based on asynchronous com-
munication has just begun, and there are many problems to be solved. Other than the
study on asynchronous interaction semantics and its relationship with objects notion, two
important points should be pointed out.

(1)  We should study whether the construction (or reduction) we performed in this
exposition can be applied to CCS or other process calculi formalisms. Especially
we should study what results one will obtain for higher-order process calculi
which passes processes [21, 4].
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(2) The most important possibility of our formal construction in the pragmatic con-
text may exist in sound formulation of the notion of types for concurrent object-
based computing. There is an interesting work in this direction by Nierstrasz
[19]. We hope that the study of asynchronous semantics will provide us with
suggestions for typed programming for concurrent objects.

Finally the authors would like to thank Carl Hewitt, who stayed in Keio University
from Autumn 1989 to Summer 1990, for beneficial discussions with them, to Professor
Joseph Goguen for his suggestions, to Vasco Vasconcelous for discussions and comments
on the paper, to Chisato Numaoka for discussions on concurrency, to Kaoru Yoshida for
her stimulating e-mails, and to all the labo members for their kind assistance and cheers.
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